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Abstract. We introduce affine and linearly invariant families of locally
injective harmonic mappings of the unit disk D. We derive sharp dis-
tortion theorems for the Jacobian that are used to establish a uniform
modulus of continuity for the quasiconformal mappings in each class.
Finally, we find a converse of a recent theorem of Chen and Ponnusamy
characterizing when the image f(D) under a quasiconformal harmonic
univalent mapping is a John domain.

1. Introduction

The purpose of this paper is to introduce certain Nehari-type classes NHµ

of locally injective harmonic mappings defined in the unit disk D. In our
study we will choose the parameter µ ∈ (0, 1]. The classes are affine and
linearly invariant, and are defined in terms of a Schwarzian derivative. It
has been shown in [8] that for sufficiently small µ, the classes consist of uni-
valent mappings, but an explicit estimate is not known, let alone the sharp
value of univalence. There is a rich literature on linear invariant families of
holomorphic mappings since the original work of Pommerenke [9], [10], and
also of families of this type of harmonic mappings [12]. The range chosen for
the parameter µ is so that techniques from the Sturm theory and arguments
based con convexity become applicable. The loss of conformality forces us
to restrict the attention to mappings which are quasiconformal (in D), but
this is enough to derive an explicit uniform modulus of continuity depending
on µ, and thus, an extension to the closed disk of the quasiconformal map-
pings in the classes. The natural question of classifying extremal mappings,
that is, univalent mappings that fail to be injective on the boundary, must
confront the difficulty that the value of µ for univalency is not known, and
will not be addressed here. We refer the reader to [6] for the holomorphic
case.
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In [2], the authors study properties of John domains that are images of D
under quasiconformal univalent harmonic mappings. They extend a classi-
cal characterization of such domains determining the rate of growth of the
derivative of the Riemann mapping f [6, Theorem 5.2], using the Jacobian
instead. Furthermore, they show that a limes superior condition for the
harmonic pre-Schwarzian at the boundary together with quasiconformality
are sufficient for the image to be a John domain. Here no reference to a
Nehari class is needed. As a harmonic analogue of Theorem 4 in [4], we
establish the necessity of such a limes superior condition when f ∈ NH1 is
quasiconformal.

Over the last decade, a fair amount of classical results of geometric func-
tion theory dealing with the Schwarzian derivative have been extended for
harmonic mappings. In this, two complementary definitions have appeared,
one in [5], and later one by Hernández and Mart́ın [7]. The results in this
paper will be based on this second definition, which seems better suited
when one is not to consider the Weierstarss-Enneper lift.

Let f = h+ ḡ be a sense-preserving harmonic mapping from D in C. The
Schwarzian derivative of f is defined by

Sf = ∂zPf −
1

2
(Pf )2,

where

Pf = ∂z log Jf =
h′′

h′
− w′w̄

1− |w|2

is the pre-Schwarzian derivative, Jf = |h′|2−|g′|2 the Jacobian and w = g′/h′

the second complex dilatation of f . If f = u + iv, the differential of f is
given by

Df =

(
ux uy
vx vy

)
and ‖Df‖ := sup{|Dfz| : |z| = 1} = |h′| + |g′| [7]. We observe that

√
Jf ≤

‖Df‖ .
For µ ∈ (0, 1] we denote by NHµ the family of locally injective, sense-

preserving harmonic mappings f = h+ ḡ for which

(1) |Sf (z)|+ |w′(z)|2

(1− |w(z)|2)2
≤ 2µ

(1− |z|2)2
,

and we let NH0
µ stand for subfamily of functions with ∇Jf (0, 0) = (0, 0).

It is not difficult to verify that the classes NHµ are preserved under the
changes f → af + bf̄ , a, b ∈ C, |a| > |b|, and the compositions f → f ◦ σ
for any automorphism σ of the disk, and are therefore affine and linearly
invariant.

Within these families it will be necessary to consider mappings which are
quasiconformal in D, as well as univalent mappings onto John domains. To



NEHARI-TYPE FAMILIES OF HARMONIC MAPPINGS 3

be precise, we consider the class NHµ(K) ⊂ NHµ of mappings for which

‖Df‖ ≤ K`(Df ) = K inf{|Df (z)| : |z| = 1} = K(|h′| − |g′|).

Thus, in NHµ(K) we have

(2)
√
Jf ≤ ‖Df‖ ≤

√
K
√
Jf .

The definition of a John domain will be postponed for the last section.

2. Preliminary Results

The first result in this section will be crucial throughout the paper.

Lemma 1. Let f ∈ NH0
µ, 0 < µ ≤ 1.

(a) If µ = 1 then

(3) |∂z log Jf (z)| ≤ L′′(|z|)
L′(|z|)

=
2|z|

1− |z|2
,

where

L(z) =
1

2
log

1 + z

1− z
.

If equality holds at a single z 6= 0 then f is an affine mapping of L.

(b) If 0 ≤ µ < 1 then

(4) |∂z log Jf (z)| ≤
A′′µ(|z|)
A′µ(|z|)

≤ 2µ|z|
1− |z|2

,

where

Aµ(z) =
1

β

(1 + z)β − (1− z)β

(1 + z)β + (1− z)β
, β =

√
1− µ .

If equality holds at a single z 6= 0 then f is an affine mapping of Aµ.

Proof. The proofs of parts (a) and (b) follow the same arguments. We will
show that in D

(5) |∂z log Jf (z)| ≤ v(|z|) ,

where v is the solution of the initial value problem

(6)

{
v′(t) = 1

2v
2(t) + 2µ

(1−t2)2

v (0) = 0 .

Since the quantities involved in the estimates are invariant under rota-
tions, it is sufficient to analyze the case when z ∈ (0, 1). For y(t) = Pf (t), t ∈
[0, 1) we have

y′(t) = ∂zPf (t) + ∂z̄Pf (t).
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With ϕ(t) = |y(t)| it follows that ϕ′(t) ≤ |y′(t)| = |∂zy + ∂z̄y| , hence

ϕ′(t) ≤
∣∣∣∣Sf (t) +

1

2
y2(t)− |w′(t)|2

(1− |w(t)|2)2

∣∣∣∣
≤
∣∣∣∣Sf (t)− |w′(t)|2

(1− |w(t)|2)2

∣∣∣∣+
1

2
ϕ2(t)

≤ 2µ

(1− t2)2
+

1

2
ϕ2(t).

(7)

Comparing (6) and (7) we have{
(ϕ− v)′ (t) ≤ 1

2 (ϕ− v) (ϕ+ v) (t),
(ϕ− v) (0) = 0

and in consequence |y(t)| = ϕ(t) ≤ v(t). The function v(t) is given by

v(t) =
F ′′(t)

F ′(t)

for F a function with SF (t) = 2µ(1 − t2)−2 and F ′′(0) = 0. For µ = 1 we
may take F = L, while for µ < 1 we can choose F = Aµ. This proves (2) and
(3), except for the estimate on A′′µ/A

′
µ, which can be found, for example, in

[3]. Observe that the proof also shows that (ϕ− v)′ (t) ≤ 0 for all 0 ≤ t < 1.

Suppose now, without loss of generality, that there is r ∈ (0, 1) such that
ϕ(r) = v(r). Then, because of ϕ− v ≤ 0 and (ϕ− v)′ (t) ≤ 0, one has ϕ = v
in [0, r] and therefore

ϕ′(t) =
2µ

(1− t2)2
+

1

2
ϕ2(t)

for all t ∈ [0, r]. So, we must have equality in all the inequalities of (7) in
[0, r], from which it follows that

|Sf (t)|+ |w′(t)|2

(1− |w(t)|2)2
≤ 2µ

(1− t2)2
=

∣∣∣∣Sf (t)− |w′(t)|2

(1− |w(t)|2)2

∣∣∣∣ ,
for all t ∈ [0, r]. Hence Sf ≤ 0 in [0, r] unless w′ ≡ 0. Likewise, we conclude
that y2(t) ≤ 0 unless w′ ≡ 0. Now, if y2(t) ≤ 0 and Sf (t) ≤ 0, we see that

y(t) = ±i|y(t)| = ±iv(t) and ∂zy ≤ 0,

and writing y = l + is, we get that in [0, r], l = 0, s = ±v,

2∂zy = (lx + sy) + (sx− ly)i ≤ 0 , and 2∂z̄y = (lx− sy) + (sx + ly)i ≤ 0 .

It follows that sx = ly, sx = −ly, and lx = 0, from where sy = ∂zy ≤ 0
and ∂z̄y = −sy. As ∂z̄y ≤ 0, we obtain a contradiction unless w′ ≡ 0, which

implies that f = F + αF , for some α ∈ C and F an analytic function with
F ′′(0) = 0 and SF (z) = 2µ(1− z2)−2. This finishes the proof. �
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Theorem 1. Let f ∈ NH0
µ, 0 < µ ≤ 1, such that Jf (0) = 1.

(a) If µ = 1 then

1

L′(|z|)2
≤ Jf (z) ≤ L′(|z|)2 .

If equality holds at a point z 6= 0 then f is an affine mapping of a rotation
of L.

(b) If µ < 1 then

1

A′µ(|z|)2
≤ Jf (z) ≤ A′µ(|z|)2 .

Equality holds at a single z 6= 0 then f is an affine mapping of an analytic
function.

Proof. (a) Given z 6= 0, z = reiθ,

log Jf (reiθ) =

∫ r

0

∂

∂t
log Jf (teiθ)dθ =

∫ r

0

〈
∇ log Jf (teiθ), eiθ

〉
dθ

and therefore, by (3),

(8)
∣∣∣log Jf (reiθ)

∣∣∣ ≤ 2

∫ r

0

∣∣∣∂z log Jf (teiθ)
∣∣∣ dt ≤ 2

∫ r

0

2t

1− t2
dt.

Hence follows the statement (a) of the theorem.
If there is equality in z = reiθ 6= 0, then

(9)

∫ r

0

∣∣∣∂z log Jf (teiθ)
∣∣∣ dt =

∫ r

0

2t

1− t2
dt,

from where, by (3),∣∣∣∂z log Jf (teiθ)
∣∣∣ =

2t

1− t2
, 0 ≤ t ≤ r,

which implies that f is an affine mapping of a rotation of L.
To prove the statement (b) we follow the same idea as in the proof of (a).

We use (4) to obtain∣∣∣log Jf (reiθ)
∣∣∣ ≤ 2

∫ r

0

∣∣∣∂z log Jf (teiθ)
∣∣∣ dt ≤ 2

∫ r

0

{
2t

1− t2
− 2µ2

1− t2
Aµ(t)

}
dt,

where α =
√

1− µ. Now, proceeding as in the proof of Theorem 3 in [1], we
see that∣∣∣log Jf (reiθ)1/2

∣∣∣ ≤ log 4
(1− r)µ−1(1 + r)µ−1

((1 + r)µ + (1− r)µ)2
= logA′µ(|z|),

from which we have

1

A′µ(r)2
≤ Jf (reiθ) ≤ A′µ(r)2.
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Reasoning as in part (a), if there is equality for some z 6= 0 in any of the
previous inequalities, then∫ r

0

∣∣∣∂z log Jf (teiθ)
∣∣∣ dt =

∫ r

0
v(t)dt,

where v is defined as in equation (6). Hence, by (4),∣∣∣∂z log Jf (teiθ)
∣∣∣ = v(t); 0 ≤ t ≤ r,

which implies that w is constant, and therefore f = ag + bg, a, b ∈ C and g
analytic and univalent. �

The following corollaries can be established following the same arguments
of the above proof, and we omit the details.

Corollary 1. Suppose that f ∈ NH0
1 . For all ξ ∈ ∂D and all 0 ≤ r < ρ < 1,(

1− ρ2

1− r2

)2

≤
Jf (ρξ)

Jf (rξ)
≤
(

1− r2

1− ρ2

)2

.

In particular,

(10)
1

M2
1

Jf (rξ) ≤ Jf (ρξ) ≤M2
1Jf (rξ),

if 0 ≤ r < ρ < 1 satisfies 1− r2 ≤M1(1− ρ2).

Corollary 2. Suppose that f ∈ NH0
1 and let z = reiθ and w = reiν ,

0 < r < 1. Then

e−2M2Jf (w) ≤ Jf (z) ≤ e2M2Jf (w),

if |θ − ν| ≤M2(1− r).

3. Boundary Behaviour

3.1. Hölder continuity. We will show that the functions in the family
NHµ(K) turn out to be bounded and Hölder continuous under a certain
condition for the derivative of the pre-Schwarzian at zero.

Theorem 2. Let 0 < µ < 1 and f ∈ NHµ(K) such that |y(0)| < 2
√

1− µ ,
where y(z) = ∂z log Jf (z). Then

(a) f is bounded. The condition |y(0)| < 2
√

1− µ is sharp.

(b) f has a Hölder continuous extension to ∂D.

Proof. Given 0 ≤ θ < 2π, we define the function

u(t) = uθ(t) = e−
1
2

∫ t
0 |y(seiθ)|ds, 0 ≤ t < 1.

Then u satisfies the initial value problem
u′′ + qu = 0,
u(0) = 1,
u′ (0) = −1

2 |y(0)| ,
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where q(t) = 1
2 |y(t)|′ − 1

4 |y(t)|2. We note that f ∈ NHµ(K) implies q(t) ≤
µ

(1− t2)2
. Now, consider the initial value problem


v′′ + µ

(1−t2)2
v = 0,

v(0) = 1,
v′(0) = u′(0),

whose solution is

v(t) =
√

1− t2
{
C1

(
1 + t

1− t

)γ
+ C2

(
1 + t

1− t

)−γ}
,

where

γ =

√
1− µ
2

, C1 =
1

2
− |y(0)|

8γ
, and C2 =

1

2
+
|y(0)|

8γ
.

As |y(0)| < 2
√

1− µ then C1 > 0 and so v(t) > 0 in [0, 1) and v(1) = 0. A
standard comparison theorem guarantees that u(t) ≥ v(t) for all t ∈ [0, 1).
Now, since C2 = 1− C1 and C1 > 0 it follows that

v−2(t) ≤ 1

C2
1

(1 + t)2γ−1(1− t)2γ+1

[(1 + t)2γ − (1− t)2γ ]2
.

From here and u(t) ≥ v(t) in [0, 1) we obtain

(11) u−2(t) ≤M 1

(1− t)1−2γ
,

for all 0 < a ≤ t < 1 and some constant M = M(C1, a, γ) > 0.
On the other hand, given r ∈ (0, 1) and θ ∈ [0, 2π)∣∣∣∣∣log

(
Jf (reiθ)

Jf (0)

)1/2
∣∣∣∣∣ ≤

∫ r

0

∣∣∣∇ log(Jf (teiθ))1/2
∣∣∣ dt

=

∫ r

0

∣∣∣∂z log(Jf (teiθ))
∣∣∣ dt

= log u−2(r).

So, with this and (11) it follows that

(12)
√
Jf (reiθ) ≤M

√
Jf (0)

1

(1− r)1−2γ
,

for all r ∈ [a, 1).
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(a) We first show that f is bounded. Obviously f is bounded in D(0, a).
On the other hand, for a < |z| < 1 and z = reiθ, by (2)

|f(z)| ≤ |f(z)− f(aeiθ)|+ |f(aeiθ)|

≤
∫ r

a

∥∥∥Df (teiθ)
∥∥∥ dt+ C

≤
√
K

∫ r

a

√
Jf (teiθ) dt+ C,

whence by (12) one sees that

|f(z)| ≤M
√
K Jf (0)

∫ 1

a

1

(1− t)1−2γ
dt+ C = M̃(1− a)2γ + C.

To show that the condition |y(0)| < 2
√

1− µ is optimal for f ∈ NHµ(K),
we consider the function

f(z) =
Aµ(z)

1−
√

1− µAµ(z)
,

where Aµ is defined as in Lemma 1. A straightforward calculation shows
that f ∈ NHµ(K) and f is not bounded.

(b) Let 0 < a < ρ < 1. There is δ > 0 such that for all z1, z2, with
ρ < |z1|, |z2| < 1 and |z1 − z2| < δ, the hyperbolic segment Γ joining z1 and
z2 satisfies Γ ⊂ {z | ρ < |z| < 1} =: Aρ. Now, by (2), (12) and an argument
of Gehring and Pommerenke in [6], we have

|f(z1)− f(z2)| ≤
∫

Γ
‖Df (ζ)‖ |dζ|

≤M
√
K
√
Jf (0)

∫
Γ

|dz|
(1− |ζ|)1−2γ

≤ B√
1− µ

|z1 − z2|
√

1−µ ,

where B is a constant that only depends on K. It follows that f is Hölder
continuous in Aρ and therefore f has a Hölder continuous extension to Aρ.

�

3.2. Logarithmic continuity. We will prove that every function f = h+ ḡ
in NH0

1 can be extended continuously to D. There is no loss of generality in
assuming that h(0) = 0 and h′(0) = 1.
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As in the proof of Lemma 1, if y = Pf = ∂z log Jf , we get that for any

fixed 0 ≤ θ < 2π, ϕ(t) = |y(teiθ)|, 0 ≤ t < 1, satisfies

ϕ′ ≤ |y′| =
∣∣∣∣Sf +

1

2
y2 − |w′|2

(1− |w|2)2

∣∣∣∣
≤
∣∣∣∣Sf − |w′|2

(1− |w|2)2

∣∣∣∣+
1

2
ϕ2

≤ 2

(1− t2)2
+

1

2
ϕ2.

(13)

Likewise, we can see that the function

u(t) = uθ(t) = e−
1
2

∫ t
0 ϕ(seiθ)ds

satisfies

u′′ + qu = 0, with q(t) ≤ 1

(1− t2)2
:= p(t).

We consider now the test function

uf (z) =
uθ(t)√
1− t2

; z = teiθ,

and we show that it is hyperbolically convex along any ray from the origin,
which means that for all 0 ≤ θ < 2π, φ(s) = uf (γ(s)eiθ) satisfies φ′′ ≥ 0,

where γ(s) = e2s−1
e2s+1

, 0 ≤ s <∞, is the parametrization of [0, 1) by hyperbolic

arc length. We first note that if v(t) =
√

1− t2, then

v′(t) = − t√
1− t2

and v′′ +
1

(1− t2)2
v = v′′ + pv = 0.

Moreover, γ′ = 1− γ2 = (v ◦ γ)2. Thus,

φ′ =
vu′ − uv′

v2
γ′ = vu′ − uv′

and therefore

φ′′ = (u′′v − v′′u)γ′ = (p− q)uvγ′ ≥ 0.

From this and the normalization ∇Jf (0, 0) = (0, 0), which implies that φ
has a minimum at 0, we may conclude that, either uf is constant along some

segment [0, reiµ), 0 < r < 1, or φ(s) = uf (γ(s)eiθ) is strictly convex (hence
strictly increasing) for all 0 ≤ θ < 2π. We study these two cases separately.

Case 1. In the first case, without loss of generality, we can assume that
uf is constant in [0, 1). Then, because of uf (0) = 1, we have uf ≡ 1 in [0, 1),

which implies u(t) =
√

1− t2, 0 ≤ t < 1, and consequently

ϕ(t) =
2t

1− t2
, 0 ≤ t < 1.

Since ϕ satisfies

ϕ′(t) =
2

(1− t2)2
+

1

2
ϕ2,



10 HUGO ARBELÁEZ, MARTIN CHUAQUI, AND WILLY SIERRA

then we have equality in all the inequalities of (13). Therefore, as in the
proof of Lemma 1, we conclude that f ∈ NH0

1 has the form f = h+ βh, for
some β ∈ C, where h is a rotation of

L(z) =
1

2
log

1 + z

1− z
, z ∈ D,

hence that h (and therefore f) has a spherically continuous extension to D.
Case 2. Now suppose that φ(s) := φθ(s) = uf (γ(s)eiθ) is strictly convex

for all 0 ≤ θ < 2π. We will use a standard argument to obtain a bound for
Jf , which gives us the desired continuous extension of f to D. Indeed, the

proof will show that f has a logarithmic modulus of continuity in D. The
condition ∇Jf (0, 0) = (0, 0) implies that φθ(s) is strictly increasing for all θ.
Therefore φ′θ(1) > 0 for all θ and so, by continuity, there is δ > 0 such that

φ′θ(s) ≥ δ, 0 ≤ θ < 2π and s ≥ 1.

It follows that

uθ(γ(s))

v(γ(s))
≥ φθ(1) + δ(s− 1), 0 ≤ θ < 2π and s ≥ 1,

and consequently

1

uθ(t)
≤ 1√

1− t2
1

δ

(
1

2
log

1 + t

1− t
− 1

)−1

, t ≥ e− 1

e+ 1
.

Thus, for all z = reiθ ∈ D,

(14) e
∫ r
0 |∂z log Jf (teiθ)|dt ≤ 1

δ2

1

1− r2

(
1

2
log

1 + r

1− r
− 1

)−2

.

On the other hand,

log
Jf (reiθ)

Jf (0)
=

∫ r

0

∂

∂t
log Jf (teiθ)dt,

from where ∣∣∣∣log
Jf (reiθ)

Jf (0)

∣∣∣∣ ≤ 2

∫ r

0

∣∣∣∂z log Jf (teiθ)
∣∣∣ dt.

Thus, by (14),√
Jf (reiθ) ≤

√
Jf (0) e

∫ r
0 |∂z log Jf (teiθ)|dt ≤ C 1

1− r2

(
1

2
log

1 + r

1− r
− 1

)−2

and therefore, by (2),

‖Df (z)‖ ≤ M

1− r2

(
1

2
log

1 + r

1− r
− 1

)−2

,

for some constantM independent on z.We may now conclude, by integration
along hyperbolic geodesics in D, see for example proof of Theorem 2 in [6],
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that for all z, z′ ∈ D,

∣∣f(z)− f(z′)
∣∣ ≤M1

(
log

M2

|z − z′|

)−1

,

where M1,M2 > 0 are constants independent on z and z′, which is the
desired conclusion.

4. John Domains

Finally, in this section we establish a partial converse to Theorem 5 in
[2], and a harmonic analogue of part (ii) of Theorem 4 in [4]. We recall the
definition of a John domain in the plane.

Definition 1. Let b > 1. A domain Ω ⊂ C is said to be a b−domain of
John, if there exist p ∈ Ω such that every point q ∈ Ω can be joined to p by
a rectifiable curve γ ⊂ Ω with

`(γ(y, q)) ≤ b d(y, ∂Ω) for all y ∈ γ,

where γ(y, q) is the subarc of γ from y to q, `(γ(y, q)) its length, and d(y, ∂Ω)
the distance from y to the boundary of Ω.

The point p in this definition will be referred to as the center of the John
domain. If f : D → C is a univalent mapping, we will say that Ω = f(D)
is a radial John domain, if p = f(0) and γ can be chosen always to be the
image of some radial segment [0, z].

We begin with a variant for the class NH0
1 (K) of a theorem proved in [11]

for conformal mappings. In [13] an analogue of this theorem is established
for the lift of a harmonic mapping.

Lemma 2. Suppose that f ∈ NH0
1 (K) and Ω = f(D) is a radial John

domain. Then there are constants M = M(K) > 0 and δ = δ(K) ∈ (0, 1)
such that

‖Df (ρξ)‖ ≤M ‖Df (rξ)‖
(

1− ρ
1− r

)δ−1

for all ξ ∈ ∂D and 0 ≤ r < ρ < 1.

Proof. Let z ∈ D. Proceeding as in the proof of Theorem 1 in [2] we obtain

(15) ‖Df (z)‖ ≥ 1 +K

K

df (z)

1− |z|2
,

here df (z) is the Euclidean distance from f(z) to the boundary of Ω. On
the other hand, as Ω is a radial John domain (with center f(0)), there is
c > 0 such that

`(f [rξ, ρξ]) ≤ cdf (rξ)
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for all ξ ∈ ∂D and 0 ≤ r < ρ < 1. From here

1

K

∫ 1

r
‖Df (tξ)‖ dt ≤

∫ 1

r
`(Df (tξ))dt

≤
∫ 1

r
|df(tξ)|dt

≤ cdf (rξ).

By (15) it follows that

(16)

∫ 1

r
‖Df (tξ)‖ dt ≤M3(1− r2) ‖Df (rξ)‖ ,

where M3 := cK2

1+K .
Now, for ξ ∈ ∂D fixed, we consider the function

ϕ(r) =

∫ 1

r
‖Df (tξ)‖ dt,

which, by (16), satisfies

ϕ′(r) = −‖Df (rξ)‖ and ϕ(r) ≤M3(1− r2) ‖Df (rξ)‖ .

It follows that for 0 < r < ρ < 1,

log
ϕ(ρ)

ϕ(r)
=

∫ ρ

r

ϕ′(t)

ϕ(t)
dt ≤ − 1

M3

∫ ρ

r

dt

1− t2
≤ − 1

2M3

∫ ρ

r

dt

1− t
and therefore

(17) ϕ(ρ) ≤ ϕ(r)

(
1− ρ
1− r

) 1
2M3

≤M3(1− r2) ‖Df (rξ)‖
(

1− ρ
1− r

) 1
2M3

for all 0 < r < ρ < 1.
On the other hand, by (2), for all 0 < ρ < 1,

ϕ(ρ) ≥
∫ 1+ρ

2

ρ
‖Df (tξ)‖ dt ≥

∫ 1+ρ
2

ρ

√
Jf (tξ) dt

and since ρ ≤ t ≤ 1+ρ
2 implies 1−ρ2

1−t2 ≤ 2, we obtain from (10) that

ϕ(ρ) ≥ 1

2

∫ 1+ρ
2

ρ

√
Jf (ρξ) dt =

1− ρ
4

√
Jf (ρξ) .

From here and (2) we have

ϕ(ρ) ≥ 1

8
√
K

(1− ρ2) ‖Df (ρξ)‖ .

It follows by (17) that

1

8
√
K

(1− ρ2) ‖Df (ρξ)‖ ≤M3(1− r2) ‖Df (rξ)‖
(

1− ρ
1− r

) 1
2M3
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and therefore
(1− ρ) ‖Df (ρξ)‖
(1− r) ‖Df (rξ)‖

≤M
(

1− ρ
1− r

)δ
,

where M = 8M3

√
K and δ = 1

2M3
. From where the lemma follows. �

Theorem 3. If f ∈ NH0
1 (K) and f(D) is a radial John domain, then

lim sup
|z|→1

(1− |z|2)Re {zPf (z)} < 2 .

Proof. We define the function

ϕ(z) = Pf (z) = ∂z log Jf (z).

Since f ∈ NH0
1 , it follows from (3) that for z ∈ D, |z| = r,

|∂zϕ(z)| = |Sf (z) +
1

2
ϕ2(z)|

≤ 2

(1− r2)2
+

2r2

(1− r2)2

=
d

dr

2r

1− r2
.

Similarly, since

∂z̄ϕ(z) =
∂

∂z

w′(z)w̄(z)

1− |w(z)|2
= −

(
|w′(z)|

1− |w(z)|2

)2

,

then

|∂zϕ(z) + ∂z̄ϕ(z)| =

∣∣∣∣∣Sf (z)−
(
|w′(z)|

1− |w(z)|2

)2

+
1

2
ϕ2(z)

∣∣∣∣∣
≤ 2

(1− r2)2
+

2r2

(1− r2)2

=
d

dr

2r

1− r2
.

(18)

Arguing by contradiction let us assume that

lim sup
|z|→1

(1− |z|2)Re {zPf (z)} = 2.

Then there is a sequence (zn) ∈ D such that |zn| → 1 and

(19) lim
n→∞

(1− |zn|2)Re {znPf (zn)} = 2.

Let us fix x ∈ (0, 1) and let

zn = ρnξn, |ξn| = 1, and rn = σn(x),

where σn is the automorphism of D defined by

σn(z) =
ρn − z
1− ρnz

.
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Note that λ(rn, ρn) = λ(x, 0) for all n, where λ is the hyperbolic metric in
D. It follows by (18) that for 0 < r < ρn,

|Re {ξnϕ(ρnξn)} − Re {ξnϕ(rξn)} | =
∣∣∣∣∫ ρn

r

∂

∂t
Re {ξnϕ(tξn)} dt

∣∣∣∣
=

∣∣∣∣∫ ρn

r
Re
{
ξ2
n(∂zϕ(tξn) + ∂z̄ϕ(tξn))

}
dt

∣∣∣∣
≤
∫ ρn

r
|∂zϕ(tξn) + ∂z̄ϕ(tξn)| dt

≤
∫ ρn

r

∂

∂t

2t

1− t2
dt

=
2ρn

1− ρ2
n

− 2r

1− r2
.

Thus, if 0 < rn ≤ r ≤ ρn, we have on the one hand

2− 1− r2

r
Re {ξnϕ(rξn)} ≤ ρn

r

1− r2

1− ρ2
n

[
2− 1− ρ2

n

ρn
Re {ξnϕ(ρnξn)}

]
and by other hand,

1− r2

1− ρ2
n

≤ 1− r
1− ρn

≤ 1− rn
1− ρn

=
1 + x

1− xρn
≤ 1 + x

1− x
.

Therefore, if 0 < rn ≤ r ≤ ρn,∣∣∣∣2− 1− r2

r
Re {ξnϕ(rξn)}

∣∣∣∣ ≤ ρn
rn

1 + x

1− x

∣∣∣∣2− 1− ρ2
n

ρn
Re {ξnϕ(ρnξn)}

∣∣∣∣ .
As ρn = |zn| → 1 and λ(rn, ρn) = λ(x, 0), then rn → 1. Also, by (19), given
ε > 0 there is N = N(ε, x) such that∣∣∣∣2− 1− r2

r
Re {ξnϕ(rξn)}

∣∣∣∣ < ε

for all n ≥ N and rn ≤ r ≤ ρn. From here and the following equality

log
(1− ρ2

n)
√
Jf (ρnξn)

(1− r2
n)
√
Jf (rnξn)

=

∫ ρn

rn

∂

∂r
log

[
(1− r2)

√
Jf (rξn)

]
dr

=

∫ ρn

rn

[
− 2r

1− r2
+ Re {ξn∂z log Jf (rξn)}

]
dr

=

∫ ρn

rn

[
− 2r

1− r2
+ Re {ξnϕ(rξn)}

]
dr,

we obtain

log
(1− ρ2

n)
√
Jf (ρnξn)

(1− r2
n)
√
Jf (rnξn)

> −ε
∫ ρn

rn

r

1− r2
dr = log

(
1− ρ2

n

1− r2
n

) ε
2

.
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As a consequence

(1− ρ2
n)
√
Jf (ρnξn)

(1− r2
n)
√
Jf (rnξn)

>

(
1− ρ2

n

1− r2
n

) ε
2

for all n ≥ N. Thus,

(1− ρn)
√
Jf (ρnξn)

(1− rn)
√
Jf (rnξn)

>
1

2

(
1− ρn
1− rn

) ε
2

for all n ≥ N. It follows from (2) that

(1− ρn) ‖Df (ρnξn)‖
(1− rn) ‖Df (rnξn)‖

>
1

2
√
K

(
1− ρn
1− rn

) ε
2

>
1

2
√
K

(
1− x
1 + x

) ε
2

for all n ≥ N. We conclude that for all β > 0 and all x ∈ (0, 1) there are
points ξ ∈ ∂D, ρ ∈ (0, 1) and r = ρ−x

1−ρx such that

(1− ρ) ‖Df (ρξ)‖
(1− r) ‖Df (rξ)‖

> β.

This leads us to a contradiction, since by Lemma 2, for all ξ ∈ ∂D,

(1− ρ) ‖Df (ρξ)‖
(1− r) ‖Df (rξ)‖

≤M
(

1− ρ
1− r

)δ
≤M

(
1− x
1 + x

)δ
if 0 < r ≤ ρ < 1 satisfies r = ρ−x

1−ρx . �
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